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A soluble theory of the post-saturation portion of a beam-plasma interaction is developed, concentrating
on explaining the results of O’Neil, Winfrey, and Malmberg. Analytic progress is made possible by
applying a certain constraint procedure, characterized by thé¢ “rotating-bar” approximation, to a
Hamiltonian formulation of the problem. The procedure yields, from the original N-particle Hamiltonian
H, a new, reduced Hamiltonian &, which has only two particle-related degrees of freedom, and which
maintains the conservation laws of energy and momentum possessed by H. The equations of motion
coming from A still describe the self-consistent interaction of a mode of the plasma with the beam
particles, as opposed to previous work, and, because of the great reduction in the number of degrees of
freedom, explicit expressions for the nonlinear frequency shift, and growth rate, of the mode can be
obtained, which are in very good agreement with the simulation results of O’Neil, Winfrey, and

Malmberg.

. INTRODUCTION

A beam injected into a dielectric medium (such as a
plasma) at an initial velocity nearly equal to the phase
velocity of a linear normal mode of the medium, can
destabilize the mode, causing its wave amplitude to grow
and the wave phase velocity to shift from its linear, un-
perturbed value., We can unify these two ideas in terms
of a complex frequency shift dw= 6wy + 7y, where the
v(real) frequency shift dwy corresponds to a shift in the
phase velocity, and y represents growth rate (or damp-
ing) of the wave amplitude.

After the wave has grown sufficiently, saturation of
the growth occurs due to trapping of the beam particles
in the wave troughs. Simulations!'? (see Fig. 1) show a
characteristic time dependence of ¥(f) and 5wg(¢) for
the subsequence nonlinear, post-saturation portion of
the beam-plasma interaction. Components at the bounce
frequency w, of the particles in the wave, and at its
second harmonic 2w,, are clearly present in the time
dependences of §wg and y.

The problem envisioned here is one in which we have
a single wave which is exactly periodic in space, but
perturbed from a strictly sinusoidal time dependence by
the presence of the beam particles. In Ref. 3, the
authors point out that this does not directly correspond
to a realistic experimental situation. A more realistic
situation to consider is a wave whose time-dependence
is strictly periodic, and whose spatial-dependence is
perturbed from a sinusoid by the beam particles. In
Ref. 3 it is shown, however, that the resultant scaled
equations of the temporal or spatial development of the
interaction are the same, but with the roles of the spa-
tial and temporal coordinates in the two cases inter-
changed.

Related to the beam-plasma interaction are problems
involving the time-dependent interaction of a plasma
wave with resonant particles in the plasma distribution
itself. Many studies, including experiments, simula-
tions, and analytic work, have been done on both of
these types of resonant particle-wave interactions, '~°
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The analyses of these studies use momentum and energy
conservation ideas to conclude that the growth rate y
should oscillate at w,, while the frequency shift swg
should oscillate at 2w,. The analyses generally use a
“frozen wave” model for this line of argument, i.e.,
they view the wave amplitude and phase velocity as con-
stant on the time scale of the particle bounce time.
These analyses therefore suffer from a lack of self-con-
sistency.

In this paper we shall concentrate on the work of
O’Neil et al., although the more general applicability to
these other related works should be clear., Those au-
thors reachthe previously mentioned general expectations
for the time dependence of 5wy and y: that ¥(¢) oscil-
lates at w,, while swg(#) oscillates at 2w,. Inspection of
their results, reproduced here in Fig. 1, however, in-
dicates that this is not the whole story. The shape of
¥(#) {dimensionless variable ;) is not a simple sinusoid,
but rather a sawtoothed shape, rising faster than it
falls. Also, Swg(f) (dimensionless variable ;) is far
from a simple sinusoid at twice w,. It appears rather
as a superposition of harmonics having fundamental
frequency w,, and having a substantial component at
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FIG. 1. Reproduction of the simulation results obtained in

Ref. 1, for the nonlinear frequency shift Q; and growth rate Q;
as functions of time. Time ¢y marks the beginning of the post-
saturation interval of the wave-beam interaction, which is the
time interval considered in this paper.
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that fundamental frequency. It displays a pattern of
rather deep downward spikes followed by a fairly flat,
convex upward portion, this pattern repeating itseif
about every bounce period. Superposed on this is an
additional component at what appears to be 2w,. In ad-
dition, there is a specific phase relation between the w,
components of Swg and 9, namely, that the trough bot-
tom in dwg(t) occurs simultaneously with the upward
zero-crossing in y(£).

In this paper we shall present an analysis of the non-
linear (post-saturation) portion of the problem studied
in Ref. 1 which gives explanations for all these features
of their results. The analysis is made possible through
an approximation (the “rotating-bar model”) which al-
lows a reduction of the problem from the (N+1) degrees
of freedom in the full problem (one wave plus N particle
degrees) to a problem with only three degrees of free-
dom (one wave plus two particle-related degrees). The
key approximation, noted by O’Neil ef agl. but then not
used by them except in a qualitative fashion, is to re-
gard the phase-space trajectories T,(f)=[x;(1), v;{#)]
(j=1,2..-N) of the particles trapped in a given wave
trough as described by an average motion of the parti-
cles Ty(#), plus a revolving motion 6T, (¢) of the jth
particle’s phase space position about this I'y(f), where
the frequency of revolution w, is the same for all j.
Lampe and Sprangle? also use a rotating-bar idea to ob-
tain estimates for the expected amplitude of variation of
v(t); however, their bar center and wave amplitude and
phase are frozen. The present work formalizes the ro-
tating bar concept and builds it into a self-consistent
set of equations of motion. We impose this approxima-
tion on a Hamiltonian formulation of the full problem via
a reduction procedure, applicable to Hamiltonian or
Lagrangian descriptions, which yields a new, reduced-
Hamiltonian formulation. In this way we maintain the
conservation laws (of energy and momentum) present in
the full problem, which are helpful in further simplify~
ing the equations of motion to be solved.

The relative simplicity of the reduced, rotating-bar
problem allows us to deal with the particle-wave inter-
action in a self-consistent manner. The self-consistent
solution gives results not expected from the frozen-
wave analysis; an enhancement of the particle bounce
frequency over the static wave value, and components in
Swg at not just 2w, but also at w,. The frozen-wave as-
sumption should be valid when either the time scale of
variation of the wave phase and amplitude are on a much
longer time scale than the particle bounce time, or when
the magnitude of variation of the wave is so small as to
be negligible. Since it is the bouncing particles them-
selves which are causing the time variation of the wave,
we know that the former of these conditions is violated.
The fact that results are found not predicted from a fro-
zen-wave analysis also shows that the latter of these
conditions is not well-satisfied.

The organization of the remainder of the paper is as
follows: In Sec. II we set up the full N-particle problem
studied by O’Neil et al., discussing their equations of
motion, the initial conditions to be applied to the post-
saturation interval of the problem with which we are
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concerned here, and a Hamiltonian formulation of the
problem. In Sec. III we describe the formal reduction
procedure we employ to obtain the rotating-bar model
in Hamiltonian form. In Sec. IV we obtain solutions of
the equations of motion of the reduced problem. Sec-
tion V is a presentation of the results obtained, and Sec.
VI is a general discussion of our findings, and of the
reduction technique,

il. THE FULL N-PARTICLE PROBLEM

In Part A of this section we shall rederive the equa-
tions used in Ref. 1. In the present work, we are
chiefly concerned with the post-saturation interval of
the time development of the interaction and so in Part
B we discuss the specification of initial conditions ap-
propriate to this time interval. Part C casts the prob-
lem in a Hamiltonian framework.

A. Equations of motion

Following O’Neil et al., we consider a one-dimension-
al beam-plasma system, where the initial beam velocity
v, is equal to the linear phase velocity of a normal mode
of the plasma in the absence of the beam. As in Ref. 1,
we consider only this single mode, assuming that it is
the fastest-growing one, and so will dominate the wave
spectrum, at least for a few e-folding times after it
saturates and enters the nonlinear stage considered
here. (As discussed in Ref. 3, the solutions of this
single-wave model have direct relevance to models
which include the effects of sidebands. )

We describe the motion of the beam particles individ-
ually, while the behavior of the particles constituting
the plasma is described by the linear plasma dielectric
function €{w, 2). The beam particle motion is thus de-
scribed by the usual force equation,

% =— (ike/m')o' (#) explikx} ()] + c. c. 1)

Here, ¢'(t) is the complex amplitude of the single mode,
E is the wavenumber of the mode, xj(f) is the position of
the jth beam particle in the laboratory frame, and e and
m’ are the charge and mass, respectively, of each beam
particle. (The primes have been introduced to simplify

the notation in the final equations, obtained in Part C of

this section.)

Factoring out the dominant, unperturbed linear fre-
quency wg from ¢’(¢) by writing ¢'(£) = ¢'’(£) exp(~ iwyf)
(or equivalently, making a Galilean transformation to the
rest frame of the unperturbed wave), we turn Poisson’s
equation into a time-evolution equation for the wave
amplitude by casting it in the form

expl~ iwot)e(wy +18/8%, k)9 = (4me/ K’ (1)
¥o
= (dne/FFILYY, expl- ikx}(t)] . 2)
=1

Here, n'(f) is the Fourier transform of the beam particle
number density in the plasma rest frame, N is the num-
ber of beam particles in the system, and L is the length
of the system. Assuming periodic boundary conditions,
we take L =27/k=one wavelength. Using wg= kv, we
transform this to the rest frame at £=0 of the beam and
unperturbed wave:
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€lwg +10/8¢, k)"’ = (dme/ B’ (1)
N
= (4me/E5) L ;5 expl— ikx}' ()], (3)
1

where x}' = ) ~ vyt and »’’ are the particle position and
Fourier transformed density, respectively, in this
frame. Finally, using the normal-mode condition
€{wg, k) =0 and expanding ¢ to first order in 6w - (¢8/8¢),
we obtain the coupled set:

N
¢! = - (4nei/ e’ = ~ (4nei/Fe) L i exp(— ikx}’) ,

=1
(4)

where €= (9¢/8w D, wp
and
%) = — (ike/m' )"’ explikx)’} +c.c. (5)

B. Initial conditions: Linear and post-saturation
intervals

Equations (4) and (5) are the basic equations of motion
used by O’Neil ef al. for the self-consistent beam-plas-
ma interaction. In addition, we must specify the initial
conditions for the process being considered. These are
(i) a uniform density beam with zero spread in particle
velocity, v}’ (¢=0)=vj-1,=0, x}' evenly spaced over L,
and (ii) a very small wave amplitude, physically arising
from thermal noise.

Thus in phase space (¢/',+’'), the particle configura-
tion at £=0 appears as a constant-density horizontal line
at ¢’ =0. This initial configuration will be periodic with
period L for qll ¢, but during the early, pre-saturation
phase of the wave development, it will be distorted in a
complicated fashion. There are several effects contrib-
uting to the complexity. If the wave-trough shape were
perfectly parabolic and time independent so that the par-
ticle bounce frequency were independent of how deeply
it was trapped, the particle configuration in phase space
would remain a straight line segment, rotating about the
phase point (x” is the trough center, v''=0). For a si-
nusoidal trough, evenif the amplitude and frequency of
the wave were taken as fixed, the large dispersion in the
bounce frequency of particles not too deeply trapped
would cause a phase-mixing in this portion of the parti-
cle distribution. In addition, of course, the wave am-
plitude and frequency are changing, for early times, on a
time scale shorter than the particle bounce time, in-
troducing further phase-mixing effects, again especially
strong on particles not well-trapped. As a result we
expect the initially linear phase-space locus of particles
to develop into forms like those shown in Fig. 2(a),
having a high density, roughly linear segment corre-.
sponding to well-trapped particles, with lower density
{per unit length of this shape), highly phase-mixed fila-
mentary tails streaming off the ends of the linear por-
tion.

Owing to these considerations, we do not attempt to
solve for the particle phase-space configuration at the
beginning of the saturation stage of the interaction, but
instead use the picture described here, supported by
Fig. 2(a), of the effect of the wave on the initial particle
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FIG. 2. (a) Reproduction from Ref. 1 of the locus in phase

space of the trapped particles at successive snapshots in time.
(b) The rotating bar idealization of Fig, 2(a) used as the central
approximation of this paper.

phase space configuration; that it will rotate one-wave-
length segments of the particle configuration through
some angle o,= alf,) at the onset =4, of the saturation
stage, with the various dispersive effects operating to
distort the bar from a strictly linear shape. At the ex-
tremities of the bar, strong dispersive effects will pro-
duce backward-bending, filamentary tails. In determin-
ing the time evolution of the wave, we shall have driving
terms, in the equations of motion, like 2, exp{i(kx)’

- 6)]. (Here, 6 is the wave phase angle.) Dueto the re-
duced density and large dispersion in phase of these
tails at the bar ends, we expect these tails to produce
negligible time-dependent effects. We shall therefore
take our post-saturation interval initial conditions for
the particle configuration to be a roughly linear, bar-like
shape (the exact shape is not critical), and with length
less than its ¢=0 one-wavelength value. The additional
parameters describing the bar at =4, are @, defined
earlier, f=the fraction of the N, particles which we take
to be in the nondispersed bar length, and 6x,, the dis-
placement from the trough bottom of the center of the
bar. (We may choose to specify x,, as done here,
setting the initial velocity 8v, of the bar center equal to
zero, or specify 6v, and set 6x, =0, or take any combin-
ation (5x,, 6v,). Specifying both, however, just intro-
duces an additional phase angle into the problem, which
we may set to any desired value by an appropriate frans-
lation in our origin of time.) These we do not derive
from first principles, but rather treat as fit parameters,
which can be evaluated from the results of O’Neil et al.,
presented in their Figs. 2 and 3, reproduced in our
Figs. 1 and 2. The idealization of this configuration to
strictly linear bars rotating in phase space, is illus-
trated in Fig. 2(b).

C. Hamiltonian and auxiliary equations

We seek a Hamiltonian which gives the N-particle

equations of motion, Eqs. (4) and (5). We find
¥o N
H:ZHf:i(KJ‘*’VJ)’ (6)
i A
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K;=py%/2m’ (7
Vy=el o' explikx}') + ¢''* exp(~ ikx}')] (8)
=2e¢y coslkx) - 0),

where (¥}, p;’) are the canonically conjugate position and
momentum of the jth particle, and ¢¢’, 6 are defined by

o =10", ¢ =9y expl- o) . ©)

In Eqs. (6)-(8), the wave variables are not in their
canonical form. For these we may choose either the
complex wave amplitude representation (¥, p,), or we
may transform these to action angle variables (6, J).
Here,

Y=(e/B)O", py=w*, (10)
and B (real) is determined from Hamilton’s equations to
satisfy

&=’ dn/er’L) . (11)
(6, J) are then defined as

J=lu|*, $=-J"%exp(-i0). (12)
In terms of the (), p,) representation, (8) becomes

V; = By explikx}’) — ipp, exp(- ikx}') . (13)
In the (J, 8) representation, Eq. (8) appears as

V;==28J "% cos(kx})' - 9) . (14)

[We have chosen 8 in Eq. (12) to put the wave trough at
Ext - 6=0.]

Making the canonical transformation

x5 pf =~ (xy=kxi, p;=p;'/k) (15)
we write H as
N
H:iH,:K+V (16)
J=1
Hi=K;+V;=@2m)"pé- 287 % coslx; - ), )
where
m=m'/E .
From Eqgs. (16) and {17) we have
Swe(t)= () =8H/8J == I /2 Y _coslx; ~ 6) (18)
i
() =4J/J =~ (2J)1eH/ 56
=pJ /%Y sinlx; - 0) . (19)
1
Combining these, we may write
swlt)=dwgll) +iv(t) = - BJ /2 Zexp[— itx; - 6)] . (20)
H

We have two conserved quantities, E=H, the total
energy, and P, the total momentum (times the constant
'), Using (18) we may write H in the form

7
H:Z;:(zm)-lp§+£ dd’ swrld’) . (21)
Since 6wgl{J)~J /%, the second term in Eq. (21) is equal
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to 26wgdJ, the form used in Ref. 1 to express H. This
form is not canonical, however, and so might be mis-
leading.

The second conserved quantity, the total momentum P,
conserved because 8 and x; appear only in the combina-
tion (x; - 6) in H, is given by

P=2_p;+J. (22)
j

What is needed now is 2 means of reducing the num-
ber of degrees of freedom in the problem, while main-
taining its essential physical aspects, including the two

conservation laws just obtained. In the next section we
describe how we go about this.

1iI. THE REDUCED PROBLEM

In Part A of this section we introduce the central ap-
proximation of this paper, the “rotating bar model.”
As noted in the introduction, this approximation enables
us to greatly reduce the number of degrees of freedom
in our problem. Mathematically, the model amounts to
applying a constraint on the particle positions, describ-
ing the positions of N particles in terms of the positions
of only two. In Part B we discuss the general proce-
durefor imposing this constraint on a Hamiltonian or
Lagrangian formulation. The method may be useful
in situations where a coherent or correlated behavior
of a number of similar subsystems occurs (in the
present problem, the subsystems are the resonant par-
tieles). Part C applies the general method of Part B
to the present problem.

A. Rotating bar model

Now, we wish to formalize the ideas involved in the
rotating bar model. The basic idea, as mentioned in
the introduction, is to describe the phase space tra-
jectory T';(#) = (x;, p;) of each particle as an average mo-
tion T'g(f) of the particles in a single wave trough, plus
a revolving motion 61",(t) about that center. The nature
of the idealization is illustrated in Fig. 2. In Fig. 2{a),
we draw from Fig. 3 of Ref. 1 the appearance of the
locus in phase space of the trapped particles, at succes-
sive snapshots in time. In Fig. 2(b) we idealize the
bar-like shapes in Fig. 2(a), keeping the approximate
center position, orientation, and bar length, and trun-
cating the filamentary tails. The phase space coordi-
nates Tg(t), T';(#), and 6Ty(¢) are depicted in Fig. 3.

The equations of motion for the average phase space
point I'y(#) are the same as those of a single particle
located at I'y, namely,

(e () (oo
(23

Expanding the Hamiltonian equations of motion for the
jth particle at phase point I';{#) about the nearby phase
point T'y(#), we deduce the equations of motion for §T'()
=T{t)- Tole):

(d/dt)sT = (d/dt)[6x;, 6p;] =R(Ty) - 6T+ o(6T)? (24)
where the rotation matrix R is given by
H. E. Mynick and A. N. Kaufman 656
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FIG. 3. Depiction of the rotating bar in phase space at an ar-
bitrary time ¢. The phase space coordinates describing the bar
and the particles which constitute it are displayed, for the par-
ticular choice of N=number of particles in the bar=2s+1=9.
These coordinates are: Ty=(x,,pq) =bar center position;

T'; = (x;, p;) = phase position of the jth particle, here shown for
j=s=4; 6T¢=(xg~xg, ps—po) =position of the sth particle (the
particle at the bar’s end) relative to the bar center.

-1

0 m
R(ly = aze? . (25)
i | 5y 0

Provided that

2
—Rz1=aa_egl

" >0 (well-trapped particles) ,

*0

the matrix R has a form which generates an infinitesi-
mal rotation in phase space. For given scales on the x
and p axes, this rotation will, in general, invoive a
stretching or contraction of the linear-bar shape, just
as would be the case for perfectly simple harmonic os-

cillation. The instantaneous frequency of revolution is
given by
wf(xo) ==RyRy=—e¢ (xo)/m . (286)

[We recall in obtaining Eq. (26) that we have chosen x
so that ¢ (x)~ cos(x— 6), hence 8%¢/8x* =~ ¢ (x). |

The term ©(3T,)? in (24) produces the anharmonic
dispersive effects on the bar shape, discussed in Sec.
II B. Our approximation is to drop this dispersive
term, for the portion of the bar not mixed away after
the post-saturation interval has begun.

We now constrain the particle coordinates, writing x;
in terms of x,, the position of a particle at the bar cen-
ter, and x,, the position of the particle at one end of
the bar. We thus take j to run from - s to s in running
over the 2s+1 =N particles in the bar. Then, we have

%y = %o+ (j/s) (% = %) ,

%= %0+ (§/8) (% = %) , (27)
py=mx;, (j=-s,-s+1,...,s).

In writing (27) we have specified the phase points I'; of
the N=fN, particles in the bar (here f is the fraction of
beam particles which are in the bar) entirely in terms
of the phase points I'y and T, of particles at the bar
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center and bar end, respectively. If we impose this
constraint upon the Hamiltonian H or Lagrangian L
governing the time development of the system we obtain
a new rveduced Hamiltonian H or Lagrangian L~, in terms
of a reduced number of degrees of freedom {two degrees
to describe the bar and one degree for the wave).

To complete the model, we must say something about
the fraction (1 — #) of particles in the filamentary tails.
We assume that they are broadly spread in phase, so
that their time-dependent effects vanish. We expect the
tail particles to be approximately symmetrically dis-
tributed about the wave trough, so that the average of
sin(x; — 8), over the tail, should vanish. Since the tail
particles are shallowly trapped, we expect the tail-aver-
age { coslx; - 9))' = C to be an approximately constant
negative number, 0> C>—1 [recalling that the wave
crest is at {x;— 6)=2n}. Then, defining N, = (1 - )N,
the number of particles in the tail, we may write

3~ expilx; - 8)= N, { explilx, - 6)])’
=N, { coslx; ~ 8))' +iN,(sin(x; - 8))'
~N,C . 28)

From Egs. (18) and (19), we accordingly expect the
tail contributions, 5wR, and 67,, to 6wg and vy, to be

bwg, =— BI/?N,C, (29)

87, =0. (30)
From (14), we expect a contribution V, to V,

V,=-28YJN,C. (31)

The kinetic energy contribution of the tail, which we also
take to be time independent, just gives an additive con-
stant to H, which we drop.

B. General reduction procedure

Equations (27), which are the mathematical statement
of the rotating-bar model, amount to a set of (N-2)
holonomic constraints on the coordinates x;, expressing
all the x; in terms of only x, and the relative coordinate
t=x,~- xy. Such a constraint is easily applied to a
Lagrangian formulation of the problem. However, we
are working with a Hamiltonian formulation. We thus
seek, in this subsection, to find a prescription for ap-
plying the constraint equations (27) to a Hamiltonian.
We begin by constraining the Lagrangian of the problem,
which we write in the general form

N
L=Lxy, %5}, @)= Lo(Q) + ]Z; Lylxy, %55 Q) - (32)

The parameter @ here represents the set of wave
variables, which do not enter into the reduction pro-
cedure, and so we drop @ from explicit notation. L, is
the contribution of a single particle to the Lagrangian.
Let us denote the set {x;, £} of the reduced variables by
the more general notation {g,}. Then, we write the con-
straint equations (27) more generally as

X5 = x[{qk}s ]/S]

Xy = o {qk7 q.k}, ]/S] , (33)

Dy=mxy .
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If we now write the Lagrangian (32), replacing x; and £
there by their constrained description in terms of the
reduced set of coordinates {q,, ¢,}, Eqs. (33), we obtain
the reduced Lagrangian L:

b=t 5 2) o0 2)

The equations of motion for the reduced coordinates then
come from the usual Lagrangian prescription, i.e.,

0=(d/deL/og,~8L/0q, .

(34)

(35)

In writing (27) we are assuming that the g,(¢) evolve in
time such as to make [ df L(¢) an extremum, just as the
x;(#) evolve in time so that [ df L(#) is an extremum.
The set of possible motions of the x;(f) described by the
constraint equations (33) are a proper subset of the un-
constrained problem. Thus to the extent that our con-
straint equations (33) are valid, the reduced variables
q,(#) should develop in time in such a manner as to ac-
curately describe the time evolution of the full problem.

We may generalize Eq. (34) slightly, allowing the
discrete distribution of particles along the bar to be-
come a continuous one, with the discrete parameter j/s
replaced by a continuous parameter A, the 7, in (34) to
become an [ dx. We thus write

I:{Cbz, (I.k}

= Lo+ | @ FOOLLxad, 2), vgn o V)] - (36)

Here, .F()) is the density distribution of the particles
along the bar, normalized to N. If we wish to recover
the discrete notation in (34), we may simply take

N .
ror-$of-(1)
j=1 s
We may use either the discrete or continuous forms for
L. We choose to use the continuous form, Eq. (36).

{37)

For the Hamiltonian formulation we proceed similarly,
except that we must be careful in obtaining the momenta
P, canonically conjugate to the ¢,. We do this via the
Lagrangian definition:

P,=8L/0g;

= (B/Bdk)jdx F(K)Ll[x({q,}, ), 'U({(Ib f}x}’ )‘)]

=f5x F) (8L/8v)(8v/84,) . (38)
Using p=8L/8v, we write (38) as
P, = f INFO)p dv/84, - (39)

This expresses P, wholly in terms of things known from
a Hamiltonian formulation of the full problem. We may
thus apply the reduction procedure analogous to Eq. (36)
to the full Hamiltonian H, and re-express this H in
terms of the canonical variables {q,, P,}. The equations
of motion, equivalent to (35), are then the usual Hamil-
tonian equations coming from H.
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C. Reduced Hamiltonian

We now apply the general procedure just described to
the specific problem at hand. The constraint equations
(33) are given by the rotating bar'model (27), and we
take a constant density bar, with A running from minus
one to one:

F(X\) =N/2 =const . (40)
We write (16) and (17) in the form of (32) as
N
H=Hy+ Y_H,, (41)
=1
Hy=V(J)==-28N,CVJ, (42)
Hy(x), ps; 8, J) = (p3/2m) - 28V d coslx; — 6) . (43)
From (27) we have the new dynamical variables
q1 = X, @=E=x,— X - (44)
Following the prescription (34), we write
1
H=Hy+ L dx FO) Hy[x(xo, £ 1), plagy & M)
N\ (1 S
:H0+(§)I d)\[———— 28V J coslx - 9)] . (45)
-1 2m

The canonical momenta Py, P, are obtained using the
prescription (39):

1
Py= L dx FOOpL- - -5 M8/ Bx,

1
- (/2) f A\ g+ 1E) = Ny | (46)
-1
and similarly
1
P,=(N/2) f dmlto A=/ 3)mE . (a7)

Carrying out the integration in (45) and using (46) and
(47), we finally get

H{xo, P; &, Py 0, ) =K+ V+ V,
= (P2 +3P%)(2mN)™ - 287 Y/ ND(£) cos(x, - 6) + N,C] ,
(48)
where
D{t)=sint/t .

The factor D comes from performing the integration
4 dx cos(xy— 6 + &) prescribed by Eq. (45). Analogous
to (18)—(20) this reduced form gives

Swelf)=0 () =8H/8J
= - BSY/2[ND(£) cos(x, - 6) + N, C]
y(t)= J(#)/2J = BT /2 ND(£) sinlx - 0) ;

(49)

(50)
(51)
and combining these,

dw(t)=bwg + iy =~ BJ /2{ND(£) exp[ - i(x, - 6)]+ N,C} ..
(52)
Analogous to (21) and (22), we again have conservation
of energy A and momentum P:

H=K+26wgd (53)
P=P - P,=Py+J=Nmxg+J . (54)
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Here, P’ is the total momentum of the N particle sys-
tem, and P, is the momentum of the particles in the tail.
Energy conservation was maintained in carrying out the
reduction procedure simply by keeping to a Hamiltonian
formalism, i.e., by obtaining H from H. Momentum
conservation holds in the reduced problem for essential-
ly the same reason as it held in the full problem, name-
ly, that the system is invariant under a displacement of
the entire wave-plus-particles system. We also note
that the momentum depends only on the Py momentum
and not on the variables £, P,. Physically, this is to be
expected, since the momentum of the jth and (~ j)th
particles in the bar is py+ m(j/s)(x, - %) + pp— m(/s)

X (x, — Xg) =2p,, i.e., the relative momenta cancel.

We now use P conservation to further simplify the
problem from three to two degrees of freedom. We
choose to eliminate the wave variables. Introducing the
generating function

S(xo, &, 6; P, Py, P)=P,(x,— 0)+P0+ Bt , (55)

we transform from (%, &, 6; Py, P,, J) to {5, £ 6 45,,, ﬁ‘, P)

by the usual prescription.'® We have used only the iden-
tity transformation for the variables E, P,, i.e., we have
E= & ﬁe =P,, a}nd so we drop the tildes on these symbols,

as well as on P,, for simplicity of notation. For the
other variables we have
P,=Py, n=x-6, 6=0, P=Py+J. (56)

From (54) we see that the new momentum P here has the
same significance as P had there, the total momentum
of the system, a constant. Hence, §=0 is an ignorable
coordinate. The new coordinate 7 is the position of the
bar center relative to the trough bottom. Since b=p
and § =6, we retain the old symbols P, 8 in our trans-
formed H

H(n, Py; £, Py; P) = (P%+3P%) 2mN)?

- 2B(P - P,)Y/2[ND(£) cosn + N,C] .
(57)
We now seek a means of solving the corresponding equa-
tions of motion, coming from this H.

1IV. SOLUTION OF THE REDUCED PROBLEM

We have now reduced the full N-particle problem to
one involving only two degrees of freedom. The equa-
tions of motion are nonlinear. To proceed further, we
may either introduce some additional approximations,
allowing further analytic progress, or numerically in-
tegrate the equations of motion, for specified initial
conditions. We shall follow both of these alternatives.

We first follow the former route, namely linearizing
the full equations of motion coming from (57) about a
fixed point which is appropriate to the physical situation
under consideration.

The equations of motion are

7 =8H/8P, = (mN)P,+ BJV3{ND(t) cosn + N,C} ,

(58)
£=(3/mN)P,, (59)
P,=~28J2ND(¢) sinn , (60)
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P,=28J"/2ND' (£) cosn ,
where
D'(¢)=dD/dt ;

we recall that the wave action /=P - P, is to be de-
scribed in terms of the new variables P, P,.

The fixed points are determined by setting the left
sides of Egs. (58)-(61) equal to zero. Doing this, one
obtains several possible fixed point solutions, but only
one of them corresponds to the case of interest. We
shall denote by A° the fixed point value of any dynamical
variable k. The relevant fixed point satisfies the follow-
ing:

(a) The bar center lies at the wave trough, rather
than at the crest, for which the equilibrium would be
unstable. Thus,

n°=0 (62)

(instead of n°=+7).

{b) The unperturbed (i.e., fixed) bar has zero length
in phase space,

£=-p=0, (63)

so that the resonant particles in this fixed point, steady
state condition form a single “superparticle.”

{¢) There is a finite-amplitude wave, i.e.,

Jo> 0. (64)

Equation (60) is satisfied identically because of (62),
as is {61) because of {63). Finally, Eq. (58)is a state-
ment that the steady state particle velocity (negative in
the initial beam rest frame) is equal to the steady-state
wave phase velocity, so that the particles maintain a
steady-state phase relation with the wave. It yields a
condition determining the steady-state wave action Jy,
or equivalently particle momentum P9:

- PP~ P3'/2=gmN(N + N,C) . (65)

Since the saturation wave amplitude is roughly equal
to this steady state value, Eq. (65) gives an approxi-
mate expression for the wave saturation amplitude.
(However, it is still a function of the as yet undeter-
mined constants P, f=N/N,, and C.)

Equations (62)-(65) determine the fixed point values
7% PS, &% PY. We now linearize Eqs. (58)-(61) about
this fixed point, writing #’=h - 1° for all variables &.
Physically, this corresponds to perturbing the particles
from the steady-state situation, allowing the particles
as a whole to slosh back and forth in the wave trough
(n’, P, #0), and introducing a finite spatial and momen-
tum spread (£’, P;#0). The linearized equations of mo-
tion are

7’ =[(mN)1+8J 33N+ N,C)] P,

= (mNY(1 = } PY/J)P, , (66)
Pl =-2pNJL 2y, (67)
£'=(3/mN)P; , (68)
Py=-(2p/3)NJ} 2" . (69)
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Thus, to first order about the fixed point, we see that
the motion decouples into two simple harmonic oscilla-
tor systems (7', P;) and (£', Py), having frequencies w,qg
and w,q, respectively, given by

wi=28m IV 31 - L PY/dy)

2 _ -1q71/2
wro—Zﬁm J()/ .

(70)
(71)

Comparing (71) and (26), we find that w?; = w?(x,=0),
i.e., the reduced Hamiltonian formalism and the simpler
analysis of Sec. IIT A give the same result for the bar
revolution frequency.

Comparing (70) and (71), we see that wfo is enhanced
over w?, by the factor (1 - PY/J;)>1. The second term
Ag=-4 PY/Jg in the parenthesis here comes from the
second term in the parenthesis in (66), which corre-
sponds to the contribution to 7 from 6§, i.e., the self-
consistent wave response to the particle sloshing. As
the particles slosh in one direction in the wave trough,
the wave responds in the opposite direction. The parti-
cles thus see an effectively steeper potential well, and
s0 bounce more rapidly. The revolution frequency w,,
however, depends only on the wave curvature at the bar
center. Since this curvature varies only to the second
order in the displacement 5 of the bar center from the
wave trough, w, is unaffected, to the first order, by the
wave response.

For larger perturbations away from the fixed point,
we would find those effects one expects from any coupled,
anharmonic oscillation problem. These include: (i) an
amplitude dependent shift in the bounce and revolution
frequencies, due to the anharmonic state of the wells in
which the corrdinates n and £ are oscillating; (ii) a shift
(again amplitude dependent) in the time-averaged drift
velocity (8), ={5wg), of the wave-particle system.

[This velocity is negative in the rest frame of the un-
perturbed (i. e., beamless) wave, by momentum conser-
vation. | Also we expect (iii) some coupling of the two
oscillators.

The exact value of the factor &, is dependent, through
Eq. (65), on the as yet free parameters fand P. In
Egs. (72)-(74) we shall relate these two parameters,
still leaving f as a parameter undetermined by our mod-
el. Thus, the value of w?/w?=1+5 for nonlinear oscil-
lations is f dependent as well as amplitude dependent.
For this reason we do not precisely calculate & (the
nonlinear generalization of Agy) from our model, but shall
shall rather infer the value of & from the results of Ref.
1. From there, we expect to have |A] «1, i.e., w,

= w,.

For the linear case, we can estimate A in terms of f,
by assuming that the average momentum p;’ of a parti-
cle in the tail is the same as the fixed-point value of the
bar particles p}’ =PY/N. The total momentum P’ of
the (wave +bar +tail) system, exactly conserved by Eq.
(22), is equal to zero, because at ¢=0 there were neg-
ligible wave action and an unperturbed beam, which had
zero velocity in the unperturbed wave-beam rest frame.
We then have

0=P =Jy+P%+ P, =Jy+(1+N,/N)P}
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=Jo+f P2, (72)
where we define P, =N,p,’. Thus,
Jo=~f71Py, (73)
Bg=~3 PY/Jy=f/2 . (74)
For example, if we take f=%, then
Wao!/ Wpe=1.12 , (75)

For excursions from the fixed-point values of nonlin-
ear amplitude in the 7 and § systems, we still expect the
systems to oscillate about their time-averaged values.
The time dependence of the oscillations will no longer be
strictly sinusoidal, due to the anharmonic nature of the
restoring forces the two systems see. However, we
shall see that the highly nonlinear characteristics of
the functions swg(f) and y{f) come principally not from
the anharmonic nature of these oscillations, but rather
from the fact that 5wy and ¥ are highly nonlinear func-
tions of these oscillatory solutions. To see this, we ap-
proximate the solutions for the dynamical variables by
exactly sinusoidal functions of time:

n' (f) =0 sinlw,t+ ¢,) , (76)

Pi(f) = P, coslw,t+¢,) , (77)

£ (t) = E sin(w,t+d,) , (78)

P{{t) =P, coslw, t+¢,) , (79)
where from (66) and (67),

P =mN(+AY w7, P,=(mN/3w,t, (80)
and

wy= 1 +8)72, (1 +4/2)w, . (81)

This approximation is supported by the good agree-
ment between the analytic expressions we obtain for
dwpg(t) and y(f) when we substitute (76)-(81) into (50) and
(51), and the results we obtain from numerically inte-
grating the full nonlinear equations of motion (58)-(61).
The point to notice is the one noted here, that the non-
linear characteristics of Swg{f) and y{£) come mainly
from their highly nonlinear dependence [cf. Egs. (50)
and (51)] on the oscillatory functions of time n, P,, &,
and P,.

To complete the preparation for obtaining results, two
details remain. First, we convert all quantities to di-
mensionless variables. We scale time by the linear
(simple harmonic) revolution frequency w,,, and the
momenta to units of the steady state wave action J°.
This is done most conveniently by rescaling the Hamil-
tonian., Defining ¥= kf;’, we choose i by requiring that
our new dimensionless variables, with (8/8¢) replaced
by (8/87)=w;5(8/8¢), obey Hamilton’s equations. We
then have
Ta=P, /I, 7g=P/d°,

T =w,gt , n=p/J°,

§ =Jd/Jy=1-m,,

5e= (2 puf ) + 37%) — ug' /¥ fD(E) cosn +£,C]

where
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FIG. 4. Post-saturation interval of the simulation results of
Ref. 1 shown in full in Fig. 1. The coordinate axes have been
rescaled to conform to the dimensionless variables used in this
paper.

“EMNoer/JO . (82)

This is the scaled form of Eq. (57). From this we
obtain the scaled forms of Eqs. (50)-(52):

Qp=bwg/w,o=83¢/89 =~ ud /Y fD(£) cosn +£,Cl ,  (83)
Qr=v/wpo= n§2fD(E) sing , (84)
Q=Qg +iQ = - pd™/2[ D) exp - in) + f,C]. (85)

Finally, we still have a number of parameters to eval-
uate which are left free in our model. These have to do
with the initial conditions for the beam-plasma interac-
tion. In (76)-(79), we need the amplitudes 7 and £, and
the relative initial phase ¢¢= (¢, ~ ¢,) of the two oscil-
lating systems. Then, if we use the model (72)-(74),
we need only further specify f, the fraction of particles
in the rotating bar, and C, a measure of where in the
wave the particles in the tail spend most of their time.
We thus have five parameters to specify. We do this by
comparison with the information given in Figs. 2 and 3
of Ref. 1. The phase ¢, can be roughly obtained from
Fig. 3 there. The other parameters may be approxi-
mately evaluated by fitting characteristics of the results
of Ref. 1 (their Fig. 2, our Fig. 1) to results obtained
from the rotating bar model. The amount of arbitrari-
ness in this fitting procedure is not nearly as large as
the number of free parameters might lead one to sus-
pect, however. Varying the parameters leads to some
quantitative variation of results, but the qualitative fea-
tures of the curves for §wg(f) and y(f) obtained by O’Neil

et al., enumerated in the introduction, are all reproduced

by the rotating bar results, for wide ranges of values of
these free parameters.
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V. RESULTS AND DISCUSSION

In Fig. 4 we reproduce the N-particle results of O Neil
et al., shown in full in Fig. 1, for the post-saturation
portion of the interaction. The coordinate axes have
been rescaled to conform approximately to our dimen-
sionless variables, We have assumed that the ratio
wy/wyo in the N-particle results is the same as in our
numerical integration, i.e., we have synchronized the
bounce periods. Doing this determines the rescaling
of the frequency axis from Ref. 1 to here.

In Figs. 5 and 6 we show the results of numerical in-
tegration of the exact equations of motion for the re-
duced problem, for the particular choice of parameters
indicated in the figure captions.

Comparing Fig. 4 with Figs, 5 and 6, we see that the
N-particle results are in strong qualitative agreement
with those of our numerical integration, but that the N-
particle amplitudes are somewhat larger than ours, for
the particular choices of free parameters which we
have made. The exact quantitative agreement is not
particularly important, however, in view of these free
parameters in the reduced problem.

In Fig. 5, we have set §=0, i.e., we have set the bar
length equal to zero, and so have only a single “super-
particle,” composed of the N bar particles at the same
phase-point, sloshing in the wave trough. The 7 degree
of freedom is thus the only degree of freedom left in the
problem, and so the nonlinear problem can be solved
exactly in terms of quadratures. We see that the super-
particle solution has most of the features of the N-par-
ticle results; the sawtoothed form of y, the phase rela-
tion between Swg(2;) and ¥(Q,), and the components at
wy and 2w, in Swg. However the component 2w,, creat-

L0204 I s e s e
[+ 4
[
0.5
0.3
& olf
(0]
0.1
-0.3F
- N O T O O W |
°% 2z 4 6 8 10 12
T
FIG. 5. Results of numerical integration of the exact (non-

linear) equations of motion for the reduced (rotating bar) prob-
lem. The choices of free parameters used for the integration
are: f=0.4, C=~0.1, ¢g=—mlw,/wy) =—2.868, T, =P,/J°

=0.65, £=0.
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FIG. 6. Same as Fig. 5, but for a nonzero bar length, z=1.

ing the shallower troughs in wg, is not as pronounced
in Fig. 5(a) as in the N-particle results, Fig. 4(a).
When we allow the bar to have a finite length, £=1.0
[Figs. 6{a, b)], we see that the 2w, component in 5 be-
comes more pronounced, the other features of the g,
; curves remaining about the same. That the effect of
the finite bar length should be to contribute to §,(7) a
component at 2w, ~2w, is to be expected; the bar rotating
through 7 radius in phase space brings it back to phys-
ically the same position. The frozen-wave models, us-
ing energy-conservation arguments, also arrived at this
expectation. However these analyses do not account
properly for the other (superparticle) contributions to
Qp.

T T T T T T T T T 1T 711

0.4
0.2
g 0
-0.21-
_ N O I O O D
0.40 2 4 6 8 10 12
T
FIG. 7. Plots of the explicit functions Rg(7) and Q,(1) obtained

from linearization of the reduced problem equations of motion,
for the same valeus of free parameters as used in the numerical
integration of Fig. 5.
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FIG. 8. Same as Fig. 7, but for a nonzero bar length, ¢ =1.
(This figure bears the same relation to Fig. 6 as Fig. 7 does
to Fig. 5.)

In Figs. 7 and 8 we plot the explicit expressions
which the linear reduced-problem gives for Qg and ;.
The same parameter values as used in Figs. 5 and 6 are
used here, with one distinction. In Figs. 5 and 6, the
frequencies w, and w, which give rise to the particular
time dependence of Q5 and Q; are the nonlinear values,
reducing to their linear (simple harmonic) values w,q,
wy in the limit of small perturbation from the fixed
point. They arise naturally in the time scale of Qg{1),
,(7) from direct numerical integration of the equations
of motion. In contrast, in Figs. 7 and 8 we have simply
plugged the linear values w,g, w,o into the explicit ex-
pressions for Qg(r), £,(r) obtained by using the sinu-
soidal solutions, Eqs. (76)-(79), in Egqs. (83) and (84).
Figures 7 and 8 are thus simply plots of two explicit
functions of 7, parametrically dependent on the values of
wy, w, We choose to use there. Aside from this slightly
different scaling of the time axes, we note the good
agreement between the two reduced problem solutions,
Figs. 5 and 6 and Figs. 7 and 8, and between these re-
duced problem results and the full N-particle problem
results obtained in Ref. 1, Fig. 4.

V1. SUMMARIZING DISCUSSION

With regard to the specific problem studied in this
paper, namely that of Ref. 1, we have found a model
which is simple enough to obtain explicit expressions
for the results, and yet which contains enough of the
essential physics of the full problem that the explicit re-
sults which it yields are in very good qualitative agree-
ment with the exact numerical results of O’Neil ef al.
The model allows for the self-consistent interaction of
the wave and particles, which leads to results not ex-
pected from the frozen-wave approaches used previous-
ly.

In the process of formalizing the rotating bar concept,
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we have introduced a general technique for reducing the
number of degrees of freedom in a problem, whenever
the phase space trajectories of the separate degrees of
freedom can be approximately described in terms of
fewer variables than the full 2N coordinates and momen-
ta present in N degrees of freedom. For coherent mo-
tions, as in trapped-particle phenomena, such a de-
scription becomes possible.

If we wish to apply the technique to other problems in-
volving resonant-particle-wave interactions, extensions
of the method may become necessary. For example,
the bar shape desired may be curved rather than linear
in phase space, or the resonant particles may come
from the plasma distribution itself, and so fill out a two-
dimensional locus in phase space. In both cases, the
new feature appearing is that we can no longer write our
constraint equations in the simple form of Eqs. (27) or
(33), in which the coordinates x; are expressible just in
terms of the reduced coordinates g, (and the parameter
A; =j/s). We may instead generalize the form of the
constraint equations, making the replacements, in going
from L{x;, %;} to I{gu, ¢},

Xy~ [{‘Ik’ q.k}’ 7‘!] s
%y U[{‘Ik, é’z}? >‘j] .

This more general set of constraints is no longer of the
type conventionally encountered in Lagrangian mechan-
ics. Thus, although the reduction procedure described
in Sec, ITl, Part B may be formally carried through,
until a concrete application of this more general formal-
ism is made, judgement on its mathematical validity and
usefulness must be postponed.

(86)
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Another possible direction of extension of this tech-
nique is to problems involving the interaction of reso-
nant particles with several waves. For example, co-
herent trapped particle motions are present even in a
turbulent plasma, as first discussed by Dupree.!! The
methods used here could possibly be adapted to deal with
such situations, by explicitly incorporating the phase-
mixing effects into the model, giving the coherent phase-
space rotations a finite lifetime.
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